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Abstract. In this article, mixed convection heat transfer is numerically studied in a vertical eccentric annulus. 
For this purpose, full Navier-Stokes equations along with energy equation are solved in a 3D orthogonal grid 
using bipolar cylindrical coordinate system and finite volume method based on SIMPLE algorithm . 
To investigate flow and heat transfer in the presence of gravity, the inner wall of the annulus is kept at a 
constant temperature, while the outer wall is assumed to be insulated. The effect of different governing  
non-dimensional parameters consisting of dimensionless eccentricity (E), radius ratio (N) and mixed convection 
parameter (Gr/Re) on the flow and temperature field are studied in detail. The numerical results obtained are in 
good agreement with previous numerical works. 
Furthermore, the effect of internal longitudinal fins on the inner wall of the annulus on the flow field and heat 
transfer is carried out for the first time in this paper. The numerical results obtained in this case indicate 
uniform temperature field comparing the finless case. In addition, the amount of augmented heat transfer due to 
adding internal fins is discussed. 
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1   INTRODUCTION 
The problem of flow through a vertical eccentric annulus and its corresponding mixed convection heat 

transfer is usually encountered in many industrial applications. One to name is drilling operation in oil/gas wells. 
Eccentricity can also arise due to poor manufacturing process or bad installation procedure which is referred as 
nominal eccentricity. Other examples in which eccentricity problem is observed are double-pipe heat 
exchangers; nuclear reactors; vertical electrical motors; solar heating systems and power distribution cables' 
cooling. One common practice to increase heat transfer rate and to decrease the size of the heat exchangers is 
internal fins. Despite the increase in pump power demand to overcome the pressure drop, internal fins are 
considered for improvement of heat transfer features. 

By considering the above lines it seems natural that there exists an excellent research literature on the subject. 
In an experimental-analytical work, Reynolds, Lundberg and McCuen [1] have suggested four principal Boundary 
conditions for convective heat transfer through the annulus (both concentric and eccentric) which formed a 
foundation for future researches. Feldman, Hornbeck and Osterle [2], [3] have investigated the developing of 
laminar flow and temperature field in eccentric annular ducts separately in two articles. Their solution was 
numerical and based on finite difference method. They used only two equations (continuity and axial 
momentum) to obtain the flow field. It is clear that the number of variables was more than equations but they 
considered the transverse pattern for secondary flow and completed their mathematical model with results of this 
hypothesis. Singh and Rajvanshi [4] presented the perturbation solution of heat transfer for eccentric cylinders 
rotating with different velocities. The solution has been obtained by using a bipolar coordinate system. EL-
Shaarawi and El-Nimr’s article [5] have treated of notable analytical solution for free convection heat transfer of 
developed flow in concentric vertical annulus. They obtained correlations for velocity and temperature fields, 
volumetric flow rate, average and overall Nusselt number. EL-Shaarawi, Abualhamayel and Mokheimer [6] have 
studied the developing forced convection in vertical eccentric annulus again, after Feldman et al. [2], [3]. They 
tried to solve the problem with less approximation, so presented a numerical algorithm based on finite difference 
method and implemented this algorithm in their next works. But their model had also simplifications based on 
boundary layer theory, which assumed that: the pressure is a function of the axial coordinate only, the axial 
diffusions of momentum and energy are neglected, and the radial-like velocity component is much smaller than 
the others. These assumptions resulted in dropping one of momentum equations (in η direction). For the first 
time mixed convection in the same geometry has studied by Mokheimer and El-Shaarawi [7]. They employed the 
bousinesque approximation to consider the buoyancy force and solved the equation with the same method as in 
[6]. Their results analyzed the developing of axial velocity profiles, variation of pressure through the length of 
duct and heat transfer parameters in details. In another article [8], they obtained the critical values of buoyancy 
parameter (Gr/Re|Cr) for mixed convection in eccentric annulus with analytical solution. In this critical value the 
buoyancy force will be equal to friction resistance and no pressure drop will be seen. Mokheimer and Sami [9] in 
the case of first principle thermal boundary condition (both of walls were kept at constant temperatures) 
investigated the condition for pressure build-up due to buoyancy effects. De Pina and Carvalho [10] for oil/gas 
well drilling purpose solve the flow in annular Space with Axially Varying Eccentricity. They simplified the 3D 
Navier-Stokes equations into two 2D differential equations based on lubrication approximation. Ingham and 
Patel [11] presented an overview of developing combined convection of non-Newtonian fluids. 

This article deals with flow and mixed convection in vertical eccentric annulus which its inner wall is kept at 
constant temperature (Tw) while the outer one is insulated. Here we use the full Navier-Stokes equations in 3D 
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form and try to minimize the approximations. The governing equations are discritized on an orthogonal 
structured grid in bipolar coordinate system. Implementation of finite volume method and SIMPLE algorithm to 
solve the equations is a new numerical approach that employed in this work. Furthermore, we study the effect of 
Adding longitudinal fins to the inner wall of channel on flow field and temperature. 

 

2   GOVERNING EQUATIONS 
Geometry of the annulus duct is illustrated in Fig. 2. Flow with uniform axial velocity (W0) and ambient 

temperature (T0) enters the bottom inlet of annulus. During the upward motion of the fluid, the flow becomes 
hydrodynamically and thermally fully developed. On the other hand, because of heat transfer from inner wall, 
the onset of free convection is observed. 

 
Figure 2. Geometry of the annulus duct 

 
Governing equations including continuity, momentum and energy balances are written in bipolar cylindrical 

coordinate system. The coordinate is defined with three components (ξ, η, z) as shown in Fig. 3. The key features 
of this coordinate are that the generated grid will be orthogonal so the computational error associated with  
non-orthogonality of the cell faces will be reduced and the grid generation process will be simplified. 

 
Figure 3. Bipolar coordinate system 

 
The transformation equation between bipolar and Cartesian coordinate system is as follows, 
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The z-axis in cylindrical bipolar coordinate is aligned on Cartesian z-axis. ξ values is between 0 and 2π, while 

η changes over the range of -∞ to ∞. As illustrated in Fig. 3 the locus of the constant-η points is a set of circles, 
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center of which is located on the x-axis at the point (acoth(η), 0). Also the locus of constant-ξ points is circles 
with radius of a /sin(ξ) which are centered at the point (0, acot(ξ)) on the y-axis. Constant-η circles were utilized 
to generate eccentric cylinders. The values η = ηi and η = ηo represent respectively inner and outer cylinders. By 
considering the existing symmetry only a half-section of the annulus is needed as below, 

 
 0 0≤ ≤ ≤ ≤ ≤ ≤o i z Lξ π η η η  (2) 
 
Now by reference to the vector form of the governing equations and making the use of vector operators in 

orthogonal curvilinear coordinate system [12], [13] and [14] equations are written in bipolar system. 
Basic assumptions made are as following: The fluid is assumed to be Newtonian, incompressible (density 

changes are only included in buoyancy term) and the physical properties were taken constant. Also the body 
forces are taken zero in all directions but axial (buoyancy). Radiation and viscous dissipation is neglected and 
there is no internal energy production too. 

In order to consider the buoyancy force in axial momentum equation, Bousinesque approximation is 
implemented and the body force in z-direction is considered as ρgβ(T-T0). Since the numerical scheme is finite 
volume, it is needed to write the conservative form of the equations1. Therefore we add the zero value term 
( .∇ Vφ ) to the LHS of non-conservative equations to produce the term .( )∇ Vφ , while the extra terms are 
included in source term on the RHS. After non-dimensionalization we get, 
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z-momentum equation 
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z
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Note that the pressure gradients are included at the end of source terms (8, 9, 10) to convert the equation into 
the conservation form, but for numerical solution (finite volume method) they should be appear in the main 
equations(4, 5, 6). The above equations are considered with the following boundary conditions. 
-inlet (z = 0):  * * * *0 , 1= = = =u v wθ  
-outlet (z = L): It is assumed that the flow becomes both hydrodynamically and thermally fully developed. 

  
* * * *

* * * * 0∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂
u v w
z z z z

θ  

To maintain the validity of this assumption, the duct length is considered large enough (L=100Dh). 
-Inner wall (η = ηi): By considering the no-slip condition and associated thermal condition we can write, 

  * * * 0= = =u v w  , 1=θ  
-outer wall (η = ηo): 

  * * * 0= = =u v w  , 0∂ =
∂
θ
η

 

-Primary (ξ=0) and secondary (ξ=π) symmetry planes: Since there's no cross flow through the symmetry 
boundary the corresponding velocity component perpendicular to this boundary is set zero. For other quantities 
the derivative in normal direction is negligible. 

  
* *

* 0 , 0∂ ∂ ∂= = = =
∂ ∂ ∂
v wu θ
ξ ξ ξ

 

3   NUMERICAL METHOD 
Finite volume method (SIMPLE algorithm) is used to solve the equations. We claim that this is the first time 

for this problem being solved with F.V. method. Using the bipolar coordinate system facilitates the generation of 
a structured and orthogonal grid. An easy method to generate the grid is to divide all intervals into equal 
segments. If m, n, and q represent number of segments in ξ, η and z directions respectively, one can write, 

 

 0, ,
−

∆ = ∆ = ∆ =i Lz
m n q

η ηπξ η  (11) 

In this manner a uniform computational grid is obtained. But because of interdependency between 
dimensions of physical grid and scale factor (h) which is itself function of ξ and η, obtained physical grid will be 
highly non-uniform which in turn increases errors in interpolations and cell's surface and volume computations. 
To obtain a uniform physical grid we have to change interval divisions. In other words ∆ξ and ∆η are no longer 
constant and vary in a way that physical dimensions of the grid h(ξ,η)∆ξ and h(ξ,η)∆η remain almost constant. 
However because of the eccentricity a fully uniform grid can never be met. 

To calculate ∆ξ and ∆η at different locations of domain two non-linear equations are solved numerically. But 
divisions in z-direction are considered uniform (∆z=L/q). 

 
Figure 4. (a) Section of Non-uniform grid (b) Section of uniform grid (c) 3D grid 
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Most of the runs are for the case in which divisions in ξ, η and z directions are m = 60, n = 18 and q = 250 

respectively. In order to check the grid independency of the code, the results for three different grids have been 
compared to each other which show a good agreement. 

Because of the zigzag treatment of pressure, Staggered grid is used to discritize the equations. The value of 
the variables and associated derivatives are calculated with power-law scheme. Since the source terms in ξ and η 
momentum equations are functions of dependent variable, we have to linearize them with existing methods [16]. 
To solve the equations SIMPLE algorithm is implemented. Energy equation should be solved simultaneously 
with momentum equations, since the buoyancy term (θ.Gr/Re 2) in z component of momentum equation depends 
on temperature. In order to maintain a stable solution SOR method is used with under-relaxation factors equal to 
0.7. In all cases of running the code, after converging, maximum value obtained for residuals is of O(10-6). 

 

3   RESULTS AND DISCUSION 

The results obtained from the code can be divided into two categories. The first is related to finless duct and 
the second case is the duct with internal fins. In the latter case it is assumed that six longitudinal fins are installed 
on the inner wall such that the angle between fins is 60º and the height of each fin is equal to one-half of the 
annulus width at the same location. The thickness of the fins is negligible and the whole height of the fin has the 
same temperature as its base, i.e. inner wall. 

Since the main goal of the present paper is to analyze the effect of different governing non-dimensional 
parameters, the computer code is run for following cases. 
Geometrical parameters: N = 0.3, 0.5, 0.7, 0.9 and E = 0.1, 0.3, 0.5, 0.7 
Physical parameters: Pr = 0.7, Re = 100 and Gr/Re = 0, 50, 100, 200, 250 

In fact the non-dimensional number seen in the governing equations is Richardson number which is defined 
as Ri = Gr/Re2. But since in literature the ratio Gr/Re is chosen as the mixed convection parameter, we have 
done the same too. 

In order to verify the obtained results from the code, they are compared with the latest and most similar 
research done by Mokheimer and El-Shaarawi [7]. As stated in the introduction, they have made more simplifying 
assumptions than what we have made here. As it can be seen in Fig. 5, in all the cases compared maximum 
difference between two sets of results is less than 5%. 

 
Figure 5. Comparison between present work and El-Shaarawi’s results (a) Variation of pressure in  

axial direction (N=0.9 and E=0.1) (b) Variation of bulk temperature in axial direction (N=0.9 and E=0.7) 
 

3.1   Finless duct 
Fig. 6 shows the development of axial velocity in three different sections of the duct. The flow is uniform at 

inlet but because of eccentricity the resistance upon the flow is stronger in narrow region of cross section 
compared to the wider region. Then it can be seen that after the profile 2, the axial velocity in narrow region 
decays while in wide region it has an increasing trend. For high values of Gr/Re or E the flow reversal is 



M.R.H Nobari, Ali Asgarian 
 

observed in narrow region (it is the case after the profile 10), but in intermediate area (b) the process happens 
slowly and smoothly. 

 
Figure 6. Development of the axial velocity profiles at N=0.7, E=0.3, Gr/Re=100 

(a) narrow region (b) middle region (c) wide region 
Θ = (η - ηo)/(ηi - ηo) Outer wall (Θ = 0)  inner wall(Θ = 1) 

 
To better understand the behavior of axial velocity, its distribution in different cross sections has been 

represented in Fig. 7(a). This figure shows that the axial velocity's peak shifts toward the inner wall and that is 
because of higher temperature of this wall. But as the flow moves downstream and reaches to a fully-developed 
profile this peak point comes back to the middle of the gap. 

 

 
Figure 7. (a) Contours of the axial velocity at N=0.7 (b) Secondary flow vectors at N=0.5 

both at E=0.5, Gr/Re=100 
 

In previous investigations secondary flows have not been addressed well, but in this work since we have 
obtained a fully three dimensional solution, the pattern of these flows is studied perfectly. In Fig. 7(b) it can be 
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seen that near the inlet (z* = 0.4) secondary flow begins to form and the direction of this flow is generally from 
narrow region to wider regions. This explains the growth of axial velocity in wide region. The secondary flow at 
z* = 0.4 reminds us of the transverse flow hypothesis of Feldman et. al [2]. But this figure shows that this 
phenomenon happens just near the inlet and far more downstream the hypothesis is no longer valid. Furthermore 
by increasing z* and approaching the hydrodynamic fully developing, secondary flow gradually decays in 
magnitude and finally diminishes completely at fully developed length. 

From a practical engineer's point of view pressure losses are far more important than the precise shape of the 
velocity profile. In figures 8(a) and 8(b), minus signed pressure gradient (-dp*/dz*) has been plotted for various 
values of Gr/Re and E. As it can be seen from Fig. 8(a), for the case of forced convection (Gr/Re=0) the plot 
begins with a large value at inlet and decays rapidly and after that stays at a constant value. The point of reaching 
this constant value is in fact the location of fully developed length. This trend is the same for other Gr/Re values. 
However an increase in Gr/Re delays the fully developing and decreases the final value of pressure drop (at fully 
developed length) such that for Gr/Re > 40 it leads to negative values of pressure drop. This means that 
increasing Gr/Re leads to the increased participation of buoyancy forces such that it can finally dominate the 
frictional resistance. This diffuser-like behavior can be interesting to designers, since they can decrease power 
demand of the pump. As illustrated in Fig. 8(b) at higher values of eccentricity pressure drop decreases. 

 

 
Figure 8. Variation of pressure loss in axial direction for different  

(a) values of Gr/Re at N=0.7, E=0.1(b) eccentricities at N=0.7 
 

To analyze temperature developing along the duct, we use mixed average temperature (bulk temperature). In 
Fig. 9(a) it has been plotted for different values of eccentricity. Decreasing the eccentricity leads to increased 
values of average temperature and accelerated trend of fully developing. Also in Fig. 9(b) temperature 
distribution in different cross sections of the duct is shown. 

For study the effect of different parameters on heat transfer, overall Nusselt number is drawn against these 
parameters. Fig 9(c), 10(a) and 10(b) show that overall Nussel number increases as the eccentricity and radius 
ratio decrease and Gr/Re increases  
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Figure 9.(a) Variation of Bulk temperature in the axial direction for different values of N at E=0.5, Gr/Re=100 
(b) Contours of temperature at N=0.7, E=0.3, Gr/Re=100 (c) Variation of overall Nusselt number in the axial 

direction for different value of E at N=0.7, Gr/Re=100 
 

 
Figure 10. Variation of overall Nusselt number in the axial direction for different values of (a) Gr/Re at N=0.7, 

E=0.1(b) N at E=0.5, Gr/Re=100 
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3.2   Duct with internal fins 
There are many ways to increase heat transfer rate in internal flows. This can be done either by increasing 

convection coefficient or increasing the heat transfer surface. The later one can be gained with adding 
longitudinal fins inside the duct. Although it can be done, but we should care for pressure drop and associated 
increased power demand for pumping. In this section a thorough evaluation of these parameters will be presented 
along with a comparison to the finless case. 

For the case of finned duct, axial velocity developing has been investigated in three axial sections  
(α = π/6 , π/2, 5π/6). Fig. 11 suggests an overall similarity between axial velocity's profiles with that of finless 
duct 

 
Figure 11. Development of the axial velocity profiles in finned duct at N=0.7, E=0.3, Gr/Re=100 

(a) narrow region (b) middle region (c) wide region 
Θ = (η - ηo)/(ηi - ηo) Outer wall (Θ = 0)  inner wall(Θ = 1) 

 
. Fig. 12(a) which shows axial velocity contours in cross sections of the duct is of more details. It can be seen 

that for the existence of the fins, velocity shell in every section has three tips instead of one single tip (counted 
just in the half-annulus under study). The fins are also an obstacle in the way of secondary flow formation. This 
moderates the decrease in axial velocity in narrow region such that because of fins there's no flow reversal in 
narrow region. On the other hand, by considering sections z* = 32.8 and z* = 50 it is observed that maximum 
axial velocity has increased compared to un-finned case. The reason lies in formation of boundary layer near the 
fins. The gradual thickening of this layer in streamwise direction makes the central core more compact and 
according to the continuity this indicates the increase in axial velocity in this region. 

The presence of fins has a direct effect on the secondary flow. Number one, they are an obstacle in the way 
of secondary flow and partly reduce the size of the velocity vectors of secondary flow. Number two, near the fins 
the flow pattern changes due to reduction of cross section's width. These changes can be well viewed in  
Fig. 12(b). In section z = 0.8 near the inlet it is seen that with formation of boundary layer on the walls, the 
quasi-radial velocity component (v) is appreciable but by increasing of z it becomes negligible and the other 
component (u) increases as a result of eccentricity. 
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Figure 12. (a) Contours of the axial velocity (b) Secondary flow vectors 

both in finned duct with N=0.7, E=0.5 at Gr/Re=100 
 

In Fig. 13(a) a comparison has been made for pressure drop along the duct with and without fins at different 
values of Gr/Re. It can be seen in all cases pressure drop in finned duct is higher than duct without fin. The 
difference is a fixed (approximately 0.1) value. Such figures help us decide if the pressure drop due to fins is 
justifiable in comparison with the gain in heat transfer rate. 

Fig 13(b) suggests that the comparison between the mixed average temperature for finned and un-finned 
ducts leads to conclusion that for the finned case average temperature has clearly increased and thermal 
developing has been accelerated. This means increased heat transfer. Also from Fig. 13(c) (in comparison with 
Fig. 9(b)) it is evident that fins have undeniable effect in increasing the heat diffusion in fluid and a more 
uniform temperature distribution within the cross section. 
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Figure 13.(a) Comparison of pressure loss between fined and finless ducts for different Gr/Re at N=0.7, E=0.3 

(b) Comparison of bulk temperature between fined and finless ducts for different E at N=0.7, Gr/Re=100  
(c) Isothermal contours in different sections of duct with N=0.7, E=0.3 at Gr/Re=100 
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