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Abstract. Developing incompressible viscous flow in a curved pipe is numerically simulated by 
solving full Navier-Stokes equations in a toroidal coordinate system using second order finite difference 
discritization in space based on projection method. To get a physical pressure field, a staggered structured grid 
is used. The numerical results obtained here include a range of curvature ratios (the ratio of pipe radius to 
curvature radius, /= a Rδ ) between 1 / 30 and 1/ 10 and the Reynolds numbers from 125 to 750. The numerical 
results are compared with available data to validate the accuracy of the code implemented. As a new 
contribution, a correlation is introduced to predict the entrance length as a function of curvature ratio and 
Reynolds number. It is observed that the entrance length increases with increasing Re and decreasing curvature 
ratio. Also pressure drop in axial direction is studied for various conditions. 

NOMENCLATURE 

a pipe’s radius 
B a dimensionless variable, 1 cos= +B rδ φ  
D pipe's diameter 
L fully developed length 
m number of grid intervals in r direction 
n number of grid intervals in φ  direction 

P' pressure 

P dimensionless pressure, 
2

'= P
P

wρ
 

q number of grid intervals in θ  direction 
r' first coordinate in Toroidal system 
r dimensionless first coordinate in Toroidal 

system, '/=r r a  
R radius of curvature 

Re Reynolds number, Re = aw

υ
 

t' time 

t dimensionless time, 
'= t w

t
a

 

u' velocity component in r direction 
u dimensionless velocity component in r 

direction, ' /=u u w  

 

v' velocity component in φ direction  
v dimensionless velocity component in φ 

direction, ' /=u u w  

V' velocity vector 
V dimensionless velocity vector, ' /=V V w  

w' velocity component in θ direction 
w dimensionless velocity component in θ 

direction, ' /=w w w  

x first coordinate in Cartesian system 
y second coordinate in Cartesian system 
z third coordinate in Cartesian system 
Greek Symbols 
δ  curvature ratio, /= a Rδ  

fdε  criterion for fully developed length 

φ  second coordinate in Toroidal system 
θ  third coordinate in Toroidal system 
Superscripts 
n current time step 
* auxiliary time step 
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1   INTRODUCTION 

Fluid flow in the entrance region of a curved pipe is of great importance to physiologists due to its relevance 
to the phenomena such as mixing of injected substance in the blood vessels to get more information about vessel 
diseases (atherosclerosis in arteries). In the industry, the flow in curved pipes encounters in heat exchangers, 
horizontal coils, turbine blade cooling systems and piping operations.  

Most of the analyses of the fully developed flow in the curved pipes have been carried out on the assumption 
of loose curved pipes where the curvature ratio (δ) is small. Dean [1,2] has shown that in the small curvature 
ratios, the fluid flow depends only on a single non-dimensional parameter, i.e. Dean number. Patankar et al.[3] 
have studied the development of flow and temperature in a curved pipe with the poiseuille flow at the inlet. Soh 
and Berger [4] solved the associated governing equations using a finite difference method based on the artificial 
compressibility technique represented by Chorin. Agrawal et al.[5] in an experimental work have measured the 
axial and secondary flow velocities in the fully developed region by the laser-Doppler velocity-meter. 

Kumar and Nigam[6] introduced a new device to improve the performance of heat exchangers based on the 
flow inversion by changing the direction of secondary flow in helically coiled tubes. Nobari and K. Gharali[7] 
have investigated the effects of internal fins on the flow and heat transfer inside rotating straight pipes and 
stationary curved pipes. Their numerical results that have been obtained using the finite volume method based on 
the SIMPLE algorithm show an optimum fin height about 0.8 of pipe radius. 

In this article the flow development in a curved pipe is studied numerically using the finite difference method 
based on the projection algorithm to solve the full Navier-Stokes equations. Parabolic velocity profile is applied 
at the inlet to run the code at different values of curvature ratios and Reynolds numbers. Finally a correlation to 
predict the hydrodynamically fully developed entrance length is proposed in terms of curvature ratio and 
Reynolds number. 

 

2   GOVERNING EQUATIONS 

The geometry of the curved pipe is depicted in Fig. 1. At the inlet fully developed velocity profile of a 
straight pipe is used. Inside the curved pipe the axial profile deforms due to presence of centrifugal forces and 
gradually approaches to a new fully developed profile. 

 

 
Figure 1. Geometry of the curved pipe 

 
The vector form of the governing equations including continuity and momentum for a Newtonian 

incompressible fluid are  
 

 
2

0

1
( ) ( )

Re

∇ ⋅ =


∂ + ⋅∇ + ∇ ⋅ = −∇ + ∇ ∂

V

V
V V V V P V

t

 (1) 

 
For convenience, the governing equations are written in the Toroidal coordinate system where the three  

corresponding components ( , ,′r φ θ ) are shown in Fig. 2. Since the Toroidal coordinate system is orthogonal and 

fully compatible with the geometry of the curved pipe, it facilitates the generation of a uniform structured 
orthogonal grid which is suitable in implementing finite difference discretization. 
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Figure 2. Toroidal coordinate system 
 

Interdependence between Toroidal and Cartesian is as follows, 
 

 

( )
( )

cos sin

cos cos

sin

′= +


′= +
 ′=

x R r

y R r

z r

φ θ
φ θ

φ
 (2) 

 
Making use of dimensionless vector form of the Navier-Stokes equation and also vector operators in an 

orthogonal curvilinear coordinate system[8], the dimensionless equations in the Toroidal system are 
 
 
 
Continuity 

 ( ) ( ) ( ) 0
∂ ∂ ∂+ + =
∂ ∂ ∂

rBu Bv rw
r

δ
φ θ

 (3) 

 
r-momentum equation 
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∂ ∂− + + + − − ∂ ∂ 

u p
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u B u r u
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φ-momentum equation 
 

 

2 2

2

2

2 2

1 1
( ) ( ) ( ) sin

1 1
( ) ( ) ( )

Re

1 sin sin
(2 ) ( sin cos 2 )

 ∂ ∂ ∂ ∂ ∂+ + + + + = − ∂ ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ ∂+ + +  ∂ ∂ ∂ ∂ ∂ ∂  

∂ ∂+ − − − − − ∂ ∂ 

v p
rBuv B v rv w Buv r w

t rB r r

v B v r v
rB

rB r r r B

u u w
v v u

rBr B

δ δ φ
φ θ φ

δ
φ φ θ θ

δ φ δ φ φ φ
φ θ

 (5) 

 
θ-momentum equation 
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where,  φδ cos1 rB += .  

In the above equations, the body forces are neglected because of their small contribution. Due to the 
symmetry of the problem, only the upper-half of the pipe is considered. The boundary conditions applied are 

  
- No-slip condition at the wall ( or 1′ = =r a r ) 

 0.= = =u v w  (7) 
 
- At the pipe entrance ( 0=θ ) there is only axial velocity obtained from fully developed solution of a straight 
pipe (parabolic profile), 

 ( )20 , 2 1 .= = = −u v w r  (8) 

 
- At  the exit ( =θ π ),  fully developed conditions are assumed 

 0.
∂ ∂ ∂= = =
∂ ∂ ∂
u v w

θ θ θ
 (9) 

 
- At the symmetry boundaries ( 0 and   = =φ φ π ), the velocity component normal to these boundaries is zero 

and for the other components, Neumann condition is applied  

 0 , 0.
∂ ∂= = =
∂ ∂
u w

v
φ φ

 (10) 

3   NUMERICAL METHOD 

Second order finite difference method in space is used to solve the equations numerically based on the 
projection algorithm  as follows 
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 (11) 

 
where the superscript n represents the nth time step. Using an auxiliary velocity represented as V*, momentum 
equation is split into the following equations 

 

 
*

21
( )

Re

n
n n nV V

V V V
t

− + ⋅∇ = ∇
Δ

 (12) 

 

 
1 *

1 0
+

+− + ∇ =
Δ

n
nV V

P
t

 (13) 

 
It is obvious that addition of Eqs. (12) and (13) leads to the original equation. Taking divergence of Eq.  (13) 

and imposing the continuity at the new time step, Poisson equation for the pressure field is obtained 
 

 2 1 *1+∇ = ∇ ⋅
Δ

nP V
t

 (14) 

 
Eqs. (12), (13), and (14) must be solved to determine the velocities and pressure. In order to discretize the 

equations, uniform grid in the Toroidal coordinate system which is suitable for the finite difference method is 
used. As mentioned above, due to symmetry, it is enough only to consider the upper half of the pipe which is 
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defined as 0 , 0 0′≤ ≤ ≤ ≤ ≤ ≤r a andφ π θ π . Therefore, this region is divided into m, n, and q equal intervals 

in the three directions of , ,  and r φ θ  respectively. 

 

 , ,′Δ = Δ = Δ =a
r

m n q

π πϕ θ  (15) 

 
A sample of the generated grid is illustrated in Fig. 3. Analysis of the numerical results for several grids of 

various sizes is carried out to show the independence of the code implemented. Most of the results presented 
here are obtained using a grid size of 15=m , 30=n  and 72=q . 

 

 
Figure 4. (a) Cross section of grid (b) 3D grid 

 
In order to obtain a physical pressure field, a staggered grid is used. The solution algorithm can be 

summarized  as follows  
- Consider an initial guess for P and V. 
- V * is calculated using equation (12) which is composed of three scalar equations. 
- Having V *, pressure at new time step ( 1+nP ) is obtained by solving the Poisson equation (14) using the SOR 
method 
- After determining 1+nP  and V *,  V n+1 is obtained from the solution of  equation (13) explicitly. 
- Repeat steps 2 to 4 with V n+1  and 1+nP  as new initial guesses until the convergence criterion is satisfied. 
 

3   RESULTS AND DISCUSION 

To validate the code implemented here, the curved pipe is set nearly close to the straight pipe by fixing a 
value of 51 10−= ×δ  for the curvature, and its axial velocity profile in the fully developed region is compared 
with the analytical solution of the fully developed velocity profile of the straight pipe in Fig. 5, indicating a good 
agreement. At the following, different features of the developing flow inside a curved pipe will be studied in 
detail and finally it will be focused on proposing a correlation to predict entrance length in the curved pipes. 

 
Figure 5. Comparison of axial velocity profile in fully developed region  

between present work at 51 10−= ×δ  and analytical solution for straight pipe 
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3.1   Axial velocity 

The trend of developing of axial velocity on the symmetry plane has been shown in Fig. 6(a). Because of 
pipe curvature, centrifugal forces appear and  cause the fully developed axial velocity profile to be different from 
that of the straight pipe. Hence as the flow progresses downstream in the curved pipe, due to centrifugal forces, 
boundary layer on the inner wall ( 1=x ) develops faster than the outer wall ( 1= −x ) deviating maximum axial 
velocity from center line of the curved pipe toward the outer wall. This trend continues as fluid flow 
downstream, and ultimately at the fully developed region it approaches to the closest fixed point to the outer wall 
depending on the curvature and Reynolds number, where a steep velocity gradient near the outer wall presents. 
In Fig. 6(b), a three dimensional view of the axial velocity at the entrance region is illustrated to get a better 
perspective. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Development of the axial velocity profiles in the axial direction, δ=0.1 and Re=500  
(a) on the symmetry plane (b) 3D shown in different sections 

 
To better understand the developing pattern, the axial iso-velocity contours are shown in Fig. 7 at different 

sections. At the section of 15= °θ , the parabolic profile of the inlet velocity has been partly conserved but 
beyond that the maximum velocity deviates toward the outer wall and deforms from the symmetrical profile. It 
can be easily observed that at the sections of 45= °θ  and 60° , double peaks appear (contour 1). Soh and 
Berger[4]  have also reported this phenomenon. 

 

 
Figure 7. Contours of axial iso-velocity at different sections for δ=0.1 and Re=500 
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3.1   Secondary flow 

 
Secondary flows in the stationary curved pipe develop due to centrifugal forces. At the very beginning of the 

entrance region, the strength of secondary flows are relatively high, but far downstream approaching to the fully 
developed region it weakens. This trend is shown in Fig. 8 where the secondary flow vector fields are plotted, 
indicating generation of vortices at different cross sections of the entrance region. 

 

 
 

Figure 8. Vectors of secondary flow in different sections, δ=0.1 and Re=500. 
 
A closer look at Fig. 6(a) reveals that the flow is almost reached to fully developed region at the section 

of 175= °θ  and the axial velocity profile stays unchanged along the curved pipe axis. In this paper to capture the 
fully developed entrance length the following criterion is used 

 0
w

θ
∂ =
∂

 (16) 

 
Table 1 shows the results for various combinations of δ and Re. In this table, the fully developed location is 

given in terms of angle θ and ratio L/D in which L is measured from the inlet of curved pipe along its center line. 
Using the above results obtained for 29 cases and utilizing the least square method, the following correlation to 
predict fully developed entrance length can be introduced in terms of δ  and Re 
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 Re θ l/D 

δ = 
1/10 

125 95 8.290314 
250 140 12.2173 
375 165 14.39897 
500 175 15.27163 
625 185 16.1443 

δ = 
1/15 

125 75 9.817477 
250 110 14.39897 
375 120 15.70796 
500 145 18.98046 
625 150 19.63495 
750 155 20.28945 

δ = 
1/20 

125 65 11.34464 
250 90 15.70796 
375 105 18.32596 
500 120 20.94395 
625 125 21.81662 
750 135 23.56194 

δ = 
1/25 

125 55 11.99914 
250 75 16.36246 
375 95 20.72578 
500 95 20.72578 
625 115 25.08911 
750 120 26.17994 

δ = 
1/30 

125 50 13.08997 
250 60 15.70796 
375 85 22.25295 
500 90 23.56194 
625 100 26.17994 
750 110 28.79793 

 
Table 1. Hydrodynamic fully developed length for different values of δ an Re 

4   CONCLUSIONS 

In this article, developing flow inside curved pipes is numerically studied using second order finite difference 
method based on the projection algorithm. The developing of the axial velocity and its dependence on the 
curvature and Reynolds number are investigated by illustrating the centrifugal effects due to the curvature in 
detail. Eventually, using numerous data obtained from the numerical simulation, a correlation is proposed to 
predict the entrance length in a curved pipe in terms of the curvature and  the Reynolds number in a specified 
range.  

REFERENCES 

[1] Dean, W. R. (1927) “Note on the motion of fluid in a curved pipe” Phil. Mag. 20, 208 
[2] Dean, W. R. (1928) “The streamline motion of fluid in a curved pipe” Phil. Mag. 30, 673 
[3] Patankar, S. V., Pratap, V. S. & Spalding, D. B. (1974) “Prediction of laminar flow and heat transfer in 
helically coiled pipes” J. Fluid Mech. 62, 539 
[4] Soh, W. Y. & Berger, S. A. (1984) “Laminar entrance flow in a curved pipe” J. Fluid Mech. 148, 109 
[5] Agrawal, Y., Talbot, L. & Gong, K. (1978) “Laser anemometer study of flow development in curved circular 
pipes” J. Fluid Mech. 85, 497 
[6] Kumar, Vimal & Nigam, K.D.P. (2005) “Numerical simulation of steady flow fields in coiled flow inverter” 
International Journal of Heat and Mass Transfer 48, 4811–4828 
[7] Nobari, M.R.H., Gharali, K. (2006) “A numerical study of flow and heat transfer in internally finned rotating 
straight pipes and stationary curved pipes” International Journal of Heat and Mass Transfer 49, 1185–1194 
[8] Yuan, S.W. (1967), Foundations of Fluid Mechanics, New Jersey: Prentice-Hall Inc. 
[9] Hughes, W.F.; Gaylords, E.W. (1964), Basic Equations of Engineering Science, New York: Schaum. 
[10] Aris, R. (1962), Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Englewood Cliffs, N.J.: 
Prentice-Hall, Inc. 
[11] Karamcheti, Krishnamurti (1967), Vector Analysis & Cartesian Tensors: with Selected Applications 
[12] Ferziger, J.H.; Peric, M. (2002), Coputational Method for Fluid Dynamics, 3rd Ed., Berlin; New York; 
London: Springer 


