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ABSTRACT 

The present work deals with the natural convection in 
a horizontal slot whose bottom is subject to a 
spatially periodic heating and the upper wall is kept 
isothermal. This type of heating results in the 
appearance of hot and cold zones along the slot 
length, and initiates primary convection regardless of 
the magnitude of the heating. It has been shown that 
the primary convection has a simple topology 
consisting of one pair of counter-rotating rolls per 
heating period when the heating intensity does not 
exceed the critical value of Racr = 427. An explicit 
solution describing such flow structures has been 
developed 

The main analysis is focused on the heating with the 
wavelength that is large when compared with the slot 
opening (small wave number limit). In this case, 
secondary motions in the form of rolls aligned in the 
direction of primary rolls and concentrated around 
the hot spots emerge for more intense heating  
(Ra > Racr). This results in bifurcation of new 
solutions corresponding to secondary convection with 
different topologies. When 427 < Ra < ~470 the 
secondary motions form the "supercritical pitchfork 
bifurcations" and can occur only if the heating wave 
number  is reduced below ~0.14. Increase of 
heating intensity to Ra > ~470 results in secondary 
motions occurring at larger values of , i.e.  
 > ~0.14, and bifurcations change character into 
"bifurcations from infinity". The bifurcation 
processes are insensitive to variation of the Prandtl 
number for Pr  0(1). 

 

1. INTRODUCTION 

Natural convection in layer of fluid has received 
considerable attention as it is the most common fluid 
flow in universe [1] and has several applications such 
as industrial appliances (compact heat exchangers), 

electronic component cooling, crystallization 
processes, chemical vapour deposition, weather 
prediction (atmospheric motions and clouds), motion 
of oceans, dynamics of the interiors of planets and 
stars (granulation of the sun), evolution of galaxies, 
etc. Over more than a century, numerous 
investigations have been done on the subject of 
classical problem of the Rayleigh-Benard convection 
(RBC) and various convective patterns have been 
observed by researchers [2]. In fact, RBC problem is 
known as a typical example of gradual transition 
from laminar to turbulent regime which can occur 
through several (known and unknown) routes and 
successive bifurcations. 

Since in reality boundary imperfection either in terms 
of geometry or in terms of distribution of temperature 
is inevitable, recent efforts have been directed toward 
analysis of the effects of imperfections in boundary 
conditions and the resulting modulation of the RBC 
problem. In addition, the external modulation can be 
viewed as an effective tool to control the convection 
scenarios and pattern formation.  

The analytical studies of modulated RBC problem 
have been done by Kelly and Pal [3,4] who 
considered both types of modulation, i.e. (i) spatially 
modulated temperature and (ii) spatially periodic 
geometry. Their analytical argument suggests that 
these two cases can be satisfactorily mapped to each 
other provided that amplitude of modulation is small 
and Ra is close to Racr. Riahi [5] studied the problem 
of weakly nonlinear thermal convection while “two-
dimensional” modulated temperature was prescribed 
at both boundaries with different fixed mean 
temperatures. His study has an important message: 
pattern formation for modulation on both boundaries 
can be quite distinct from modulation on one 
boundary; this is due to linear combination of the 
modulation modes on different boundaries. Hossain 
and Floryan [6], also explored the occurrence of 
convection due to spatial distribution of heating with 
fairly small, moderate, and large wave number of 



  

heating on the fluids with a wide range of Prandtl 
number (10-2 <Pr <103). A valuable insight into the 
RBC problem subject to modulated thermal boundary 
condition on the “lower” plane has been given by 
Freund et. all [7]; the governing Oberbeck-
Boussinesq equations were solved via direct 
numerical solution. They have presented the stability 
diagram (for certain range of Ra, wave number α, and 
for small amplitude of modulation) in the plane of α - 
Ra. 

In this work, we aim to complete the previous 
investigations on this subject ([3-7]) by extending 
analysis toward small and very small heating wave 
numbers (0.01< α <0.5). Results are presented for 
two values of the Prandtl numbers: Pr=0.71 (air) and 
7 (water). 

2. PROBLEM FORMULATION 

Consider a layer of fluid confined between two 
infinite parallel plates placed apart each other at 
distance 2d as shown in Fig.1a. The upper wall is 
kept at a constant temperature while the lower wall is 
subjected to a spatially distributed heating. Note that 
the heating pattern is such that both walls have the 
same mean temperature. Fig.1b shows the 
temperature distribution on the lower wall presented 
in terms of θ, where θ =T-TU, and TU is the upper 
wall temperature. 
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Fig.1 Parallel plates subject to a periodic heating 
                    imposed at the lower wall. 
 
The flow is assumed to be steady and the working 
fluid satisfies the Boussinesq approximation. The 
spatial pattern of heating is well parameterized by the 
heating wave number (α), the amplitude of the 
heating is specified in terms of a suitably defined 

Rayleigh number ( 3 /dRa g T d  ), and fluid 

properties are described in terms of  the Prandtl 
number ( Pr /  ). In the above, g is the 
gravitational acceleration,  is the thermal expansion 

coefficient, Td is the peak-to-peak amplitude of 
temperature variations prescribed along the lower 
plate, d is the half of channel opening,  is the 
kinematic viscosity, and  is the thermal diffusivity. 

The governing equations are the continuity, the 
stream function form of Navier-Stokes, and the 
energy equations (for more details see [6]).  

3. METHODS OF SOLUTION 

Since in numerical simulation there is some 
uncertainty about the accuracy of results, we have 
carried out solution using different methods in order 
to ascertain the validity of the results. Three 
numerical techniques including Spectral Chebyshev-
Collocation, Variable-Step-Size Finite-Difference, 
and Finite-Volume Methods have been used to solve 
the governing equations. Results produced by all 
these three solvers identify the same characteristics of 
convection in the zone where multiplicity of solutions 
exists. Besides, an asymptotic solution has been 
developed for the limit α → 0; its testing 
demonstrated good consistency with the numerical 
results. For the sake of continuity and more emphasis 
on physical aspects, the final asymptotic solution of 
field quantities is given in Appendix A. 

4. DISCUSSION OF RESULTS 

4.1 Primary Convection 

The primary response of the system appears in the 
form of two counter rotating rolls for each 
wavelength of the heating. This convective scenario 
can be obtained by asymptotic approach for the limit 
of α→0.  

The conductive temperature field generates a 
buoyancy force acting upwards at x=0 and 
downwards at x = /2; this force is responsible for 
driving the fluid upwards at x = 0 and downwards at x 
= /2 and leads to the formation of the rolls displayed 
in Fig.2. 
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Fig.2 Typical topology of stream-lines (solid lines) 
    and isotherms (dash lines) for primary convection. 



  

The reader should note that convection creates 
temperature modifications ( ̂ ) that consist of a non-

periodic term that is responsible for the generation of 
a net heat flow between the plates and a second 
harmonic of the imposed heating; there is no 
component with the same periodicity as the imposed 
heating. 

Figures 3a-b illustrate variations of the relative error 
of the asymptotic solution as a function of  and Ra, 
respectively. This provides a quantitative measure of 
the range of validity of the asymptotic solution.  
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Fig.3 Variations of the relative error of the 
asymptotic solution for a fluid with Pr=0.71 as a  
(a) function of the heating wave number  for 
selected values of the Rayleigh number Ra (Ra= 50 - 
solid lines, Ra = 400 - dash lines) and (b) as a 
function of the Rayleigh number Ra for selected 
values of the heating wave number  ( = 0.01 - 
solid lines,  = 0.05 - dash lines;  = 0.1 - dotted 
lines). The dotted line with slope ~2 is shown for 
                          reference purposes. 
 

The error is defined as 


num asym

rel
num1 y 1

q q
Err max ,

q  


   (4.1) 

where q stands either for u evaluated at x = /4 or for 
any of the remaining quantities evaluated at x = /8 
(λ=2π/α is wavelength of heating), and subscripts 
"num" and "asym" denote quantities computed on the 
basis of the complete and asymptotic equations, 
respectively. It can be seen that the relative error is 
less than 0.1 for   0.2 even when Ra = 400. 

4.2 Secondary Convection 

The primary quantity of interest in the analysis of 
convection is the net heat transfer across the slot 
which can be expressed in terms of the global (mean) 
Nusselt number based on the conductive temperature 
scale (Td) 

10

Pr dθ
Nu dx,

λ dy y





 
  
 
 
   (4.2) 

which takes the following form for asymptotic case: 

2Nu Ra /1400 when 0.asym      (4.3) 

Figure 4 illustrates variations of Nu / Ra  as a function 
of  for selected values of Ra. It can be seen that 
variations of Nu  can be predicted using asymptotic 
theory as long as Ra < 427 (lines of these cases are 
overlapped with asymptotic line in Fig.4). When  
Ra > 427, Nu branches off and approaches other 
asymptotic, Ra-dependent limits as 0. 
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Fig.4 Variations of the mean Nusselt number as a 
function of the heating wave number  for selected  
                  values of the Rayleigh number. 



  

For the case of small heating wave number , i.e. 
long wavelength of heating, small zones on both 
sides of hot spots are subject to an almost uniform 
heating. Therefore, if the magnitude of the heating is 
sufficiently large (Ra > Racr), the zones around the 
hot spots may experience the Rayleigh-Benard-type 
instability. The classical critical Rayleigh number 
expressed in terms of thickness of the slot for a 
uniformly heated wall is Racr-classical = 1708 (see [2]). 
This number expressed using the present scaling 
takes the value Racr = 427. The numerical results 
suggest that the thermal instability does take place 
provided that both  is sufficiently small and Ra 
exceeds the Racr at the same time. In this case, 
secondary rolls emerge ‘only’ locally around the hot 
spots and results in bifurcation in the solution. Two 
types of secondary convective pattern have been 
determined: (1) the one with the first roll, the roll 
closest to the hot spot, rotating counter-clockwise (in 
the opposite direction of the primary roll) as shown in 
Fig.5c, and (2) the one with the first roll rotating 
clockwise (Fig.5d). The reader may note that we have 
focused our attention on the half of the wavelength 
on the right side of x=0 (the region marked in Fig.5b 
by box) and all nomenclature and roll counting refer 
to this region. 
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Fig.5 Flow structures for heating with Ra=450 and  
α = 0.08. Fig.5a depicts the primary convective 
pattern and the temperature distribution on the lower 
wall. The remaining figures correspond to the 

existence of secondary convective rolls (Fig.5b - odd 
number of rolls, Fig.5c - enlargement of the box in 
Fig.5b, and Fig.5d - even number of rolls). Solid and 
dash lines correspond to streamlines and isotherms, 
                                respectively.  
 

The other characteristic which makes two types of 
flow structure completely different is the number of 
rolls. The one shown in the Fig.5c always has an odd 
number of rolls while the other one (Fig.5d) always 
comprises of an even number of rolls. Decrease in the 
heating wave number leads to nucleation of new 
rolls, however, both types of structures maintain their 
characteristics as the new rolls always emerge in 
pairs. 

4.3 Pitchfork Bifurcation 

The fact that there may be more than one solution for 
the same problem with exactly the same boundary 
conditions arises from the nonlinearity of field 
equations. The appearance of multiple solutions is 
referred to as bifurcation and is associated with a 
change in the qualitative character of the system (e.g. 
flow structure) and quantitative measure (e.g. Nusselt 
number). At this instant, we switch to the local 
Nusselt number at the hot spot as a quantity which 
well measures the properties of the flow system for 
the analysis of the branching process. This number is 
defined as  

L
x 0, y -1

d
Nu -Pr .

dy



 

  

Variation of NuL for "supercritical" value of Ra=450 
is illustrated in Fig.6. 
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Fig.6 Variations of NuL as a function of the heating 
wave number α for fluid with Pr=0.71 subject to 
heating corresponding to the Ra=450. Points C, D, 
and E correspond to the same wave number α=0.08 
but belong to branches of type 1, 0 and 2, and their  
corresponding flow structures displayed in Fig.3c, 
                Fig.3a, and Fig.3d, respectively. 



  

It can be seen that when α > 0.092 (point B), the 
solution is unique. But once the heating wave number 
decreases below the critical value of 0.092, a 
pitchfork bifurcation composed of three branches is 
found. 
For convenience we shall call solutions 
corresponding to the middle, upper and lower 
branches as branches of type 0, 1, and 2, respectively. 
Branch of type 0 has a simple topology involving one 
large flow cell extending over half period of heating 
with the fluid moving upwards above the hot spot 
(Fig.5a). For branch of type 1, flow re-arrangement 
begins with the formation of a small separation 
bubble at the upper wall above the hot spot which 
grows (as  decreases) to form a secondary roll 
attached to the hot spot. The secondary roll rotates in 
the counterclockwise direction and thus brings colder 
fluid into contact with the lower wall resulting in an 
increase of NuL. Further decrease of  results in a 
sequential formation of additional pair of rolls; this 
lets the branch of type 1 to always have an odd 
number of rolls. The same process occurs along the 
branch of type 2 with one exception, i.e., when we 
cross the critical point, two secondary rolls (rather 
than just one) appear to be followed by formation of 
additional rolls always in pairs resulting in an even 
number of rolls. 

4.4 Bifurcation from Infinity 

We shall now switch our attention to higher values of 
Ra, i.e., Ra > ~470, where changes in the flow 
structures correspond to "bifurcations from infinity" 
as shown in Fig.7. For convenience we shall refer to 
solutions corresponding to the finite and infinite 
branches as branches of types 3 and 4, respectively. 
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Fig.7 Variations of the local Nusselt number as a 
function of the heating wave number α for a fluid 
with the Prandtl number Pr=0.71 subject to heating  
                  corresponding to the Ra=450. 
 

At the left limit of the lower part of branch of type 3, 
flow forms one roll as shown in Fig.8b. Increase of  
(moving along the branch to the right toward critical 
point B with  = 0.178) results in initiation of the 
formation of a secondary roll rotating in the direction 
opposite to the direction of the primary roll. The 
process of formation of new rolls is similar to that 
observed in the case of branch of type 1 resulting in 
the creation of an odd number of rolls as shown in 
Fig.8a. At the right limit of branch of type 4, the 
motion consists of only primary convection. A 
decrease of  (moving to the left of  = 0.178) leads 
to formation of secondary rolls. Fig.8b gives a picture 
of in-flow stagnation phenomenon which is the 
starting point for the formation of two secondary 
rolls. Further decrease in  leads to the process very 
similar to that observed in the case of branch of type2 
with even number of rolls. 
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Fig.8 Flow structures for heating with Ra=480. and  
α = 0.17. Flow conditions in Fig.6a-c correspond to 
points C, D, and E in Fig.5, respectively. Solid and 
dash lines correspond to streamlines and isotherms, 
                                respectively. 
 

4.5 Comprehensive Bifurcation Diagram 

To have better perspective of the bifurcation process 
in the global parameter space, changes in the form of 
secondary motions have been traced by constructing 
two comprehensive bifurcations diagrams: (i) in the 
(, NuL) plane for fixed values of Ra as shown in 
Fig.9 and (ii) in the (Ra, NuL) plane for fixed values 
of  as shown in Fig.10, and thus permit creation of a 
global diagram in the (, Ra, NuL) space. In both 
figures, open circles identify critical conditions for 
pitchfork bifurcations and filled circles identify 
critical conditions for "bifurcations from infinity".  
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Fig.9 Variations of the local Nusselt number NuL at  
x = 0, y = -1 as a function of the heating wave 
number α for a fluid with the Prandtl number Pr=0.71 
subject to heating corresponding to the supercritical 
values of the Rayleigh number (Ra > 427). Solid, 
dash-dot, dash-dot-dot, dash, and dot lines 
correspond to bifurcation branches of types 0, 1, 2, 3, 
                           and 4 respectively. 
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Fig.10 Variations of the local Nusselt number NuL at 
x = 0, y = -1 as a function of the Rayleigh number for 
selected values of the heating wave number α for a 
fluid with the Prandtl number Pr=0.71. Solid, dash-
dot, dash-dot-dot, dash, and dot lines correspond to 
bifurcation branches of types 0, 1, 2, 3, and 4, 
                                respectively. 
 

If one transfer all the critical points marked in Fig.9 
and Fig.10 into the Ra-α diagram, the resulting plot 
shows variations of the critical Rayleigh number Racr 
as a function of  (Fig.11). It can be seen that 
decrease of  results in Racr approaching the limit of 
427, which agrees with the critical conditions for the 
Rayleigh-Benard instability for a uniformly heated 
lower wall [2]. An increase of  leads to the primary 
convection with a strong spatial modulation and 
results in a rapid increase of Racr. Other forms of 
instability may occur under such conditions but will 
require more intense heating, i.e. higher values of Ra. 
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Fig.11. Variation of the critical Rayleigh number Racr 
as a function of the heating wave number  for fluids 
with Pr=0.71 and Pr = 7. Open circles denote critical 
conditions for the pitchfork bifurcations and filled 
circles denote the critical points for the "bifurcations 
                               from infinity". 
 

4.6 Effect of Prandtl Number 

It is of interest to inquire how changes of the Prandtl 
number may affect the system response. For this 
reason the variation of NuL for wide range of α 
(which includes pitchfork bifurcation, bifurcation 
form infinity, and subcritical primary convection) is 
analyzed for values of Pr corresponding to air and 
water, i.e., Pr = 0.71 and Pr = 7. Comparison of 
results displayed in Fig. 12 demonstrates that 
bifurcation process is almost insensitive to variations 
of the Prandtl number for Pr = 0(1) as only small 
differences are observed between results for Pr = 0.7 
and Pr = 7. 
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Fig. 12 Variations of the local Nusselt number NuL as 
a function of the heating wave number  for selected 
values of the Rayleigh number for fluids with the 
Prandtl numbers Pr = 0.71 (dash lines) and 7  
                                   (solid lines). 



  

5. CONCLUSION 

We have studied natural convection in an infinite 
horizontal slot subject to periodic heating with 
heating wavelength that is large when compared with 
the slot opening. It has been shown that convection 
has a simple topology consisting of one pair of 
counter-rotating rolls per heating period when the 
Rayleigh number Ra does not exceed the critical 
value of 427. When the heating intensity is larger 
than the critical value but not too large, i.e.,  
427 < Ra < ~470, the secondary motions correspond 
to supercritical pitchfork bifurcations and occur only 
if  is sufficiently small, i.e.,  < ~0.14. Increase of 
heating intensity to Ra > ~470 results in the 
secondary motions occurring at larger values of , 
i.e.  > ~ 0.14,  and bifurcation changing character to 
"bifurcations from infinity". 

The bifurcation processes are insensitive to variations 
of the Prandtl number for Pr = 0(1) as only small 
differences have been observed between results for  
Pr = 0.7 and Pr = 7. It has been shown that the 
observed phenomena are strictly associated with the 
small wave number limit of the external heating. 
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APPENDIX A 

For the limit α→0, the asymptotic solutions for 
pressure field, u- and v-velocity, conductive 
temperature, and convective temperature take the 
following forms, respectively: 

2 21 1 1ˆ ( )( )cos( ) 0( ),
Pr 4 2 10

Ra
P x y y        

  (A.1) 
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where the total temperature includes both conductive 
and convective fields as follows 

1 ˆ.
Pr

      (A.6) 

For more details on the non-dimensionalization 
method and derivation of governing equations refer 
to [6].  
 
 
 


